
1

Processing Graph Method 2.1
Semantics

 b y
 David J. Kaplan & Richard S. Stevens

July 29, 2002

The Processing Graph Method Tool (PGMT) product is being released under the GNU
General Public License Version 2, June 1991 and related documentation under the GNU Free
Documentation License Version 1.1, March 2000. http://www.gnu.org/licenses/gpl.html



2

1 Introduction
The purpose of this document is to specify the Processing Graph Method (PGM).  We will tell you
what problem PGM is supposed to help solve.  Then we will tell you what PGM is.

Specifying PGM is a complicated proposition because PGM has many related parts.  We will tell you in
a general way, what the parts are, how they fit together, and how certain assembled parts (processing
graphs) of PGM operate.  Then we will describe how command program procedures are used to help
build and control graphs.  Finally we list and describe the functionality of the command program
procedures.

For the remainder of this document, we shall shorten the phrase “processing graph” to “graph”
whenever we can do so without confusion.

2 What problem was PGM built to solve?
The increasing need for computing power and higher throughput has led to the development of computer
architectures with multiple and sometimes disparate processors operating as a network.  Different
architectures have different inter-processor communication layouts.  Using current methods to write
application programs that run quickly on a multi-processor machine requires the programmer to be very
familiar with the hardware and system architecture of the target machine.  The program must be tuned to
take advantage of the features of the target architecture.  As a result, transporting a program from one
architecture to another requires much more than recompiling the program’s source code.  A program
written for machine architecture A cannot, in all likelihood, be compiled for machine architecture B. And
if A can be compiled for architecture B, it will not be tuned for architecture B and is not likely to achieve
high throughput.

The situation is similar to what existed in the early days of single processor machines, which differed in
their instruction sets.  Initially, machines were programmed in machine language, and then in assembly
language.  A program written for one machine had to undergo a complete rewrite to run on another
machine.  High-level languages - and compilers for them - were invented to make it possible to write a
program once.  To run a high-level language program on a new machine, one recompiled that program
using a compiler written for the new machine.

Because software could then be transported easily from one machine to another, rewrites of application
programs each time a new machine appeared on the market became less necessary.  Moreover high-level
languages were easier to write and to read.  People with less training could write and maintain programs
and rely less on micro-code and assembly language programmers.  The combined effect of easy
portability between machines and accessibility to the general technical public not only reduced the cost
of software, it also broadened the market.  This resulted in the enormous growth of computer technology
that has occurred over the last few decades.  A similar breakthrough is needed today for multiprocessor
architectures.  We must make it easy to write programs and to move them from one machine to another.
This breakthrough will require the development of an architecture independent language, together with
tools that support the affordable development of compilers for that language - compilers that target
multiprocessor architectures.

Because of the sequential syntax and semantics of high-level languages, programs written in a standard
high-level language obscure concurrency. Programs written using PGM are iconic and have internal
processes that have been organized in a way that display the application’s inherent concurrency.  PGM
programs are independent of how and at what moment data is moved among those processors.  PGM
also provides control mechanisms for responding to the changing situations that are part of most
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dynamic military and civilian situations.   Because the details of how to handle data movement devices
are not in the application specification, those details must be built into the operating system.

3 A View of PGM
A PGM application is built of two components: a command program and a graph.  Each of these
components has access to a properly configured environment that includes compilers, an operating
system, a set of PGM Libraries, and high-level languages such as ANSI C, C++, Java, Ada 83, or Ada
95.

3.1. Families
A family in PGM extends the notion of a finite array.  Families are used extensively in PGM.

3.1.1. Description of a family
A family is built on a single type called the base type.  The base type elements in a family are called
leaves.  All leaves in a family have the same base type.  As with a multi-dimensional array, identification
of each leaf in a family requires an index for each level in the family.  The number of indices needed to
identify a leaf is called the height of the family.  Thus, for example, a family with height 2 is like an array
with two dimensions and needs two indices to identify each leaf.

A family with height zero is, by definition, a leaf of the specified base type and needs zero indices to
identify that leaf.  A family with height n > 0 consists of zero or more children, each child being a family
with height n-1. A family with non-zero height and no children is called empty.  We will use the symbol,
,to represent an empty family.  The location of its instance within the family allow us to infer
the height of the instance.

The number of children of a family with non-zero height is called the content of the family.  If X is a
family with non-zero height, then it is not required that all children of X have the same content.  A family
with height 0, by definition, has no children and exactly one leaf

Each child of a family is identified by an integer index.  The smallest index is called the lower bound.  If
LB is the lower bound (any integer value) and N ≥ 0 is content, then the indices for the children are
LB, LB+1,…, LB+N-1.

Let n > 1.  Let X be a family with height n and one or more children that are all empty.  Let Y be an
empty family with height n.  We note that although both X and Y have zero leaves, they are different,
because X is not empty and Y is empty

The type of a family is its height together with its base type.  Thus an empty family with height two and
another empty family with height three have different types, even if they have the same base type.  If T is
a given base type, we may speak of a "family of T" or a "T family" to mean "a family with base type T."

Each family within a graph may have a user-supplied name.  To identify a leaf in such a family requires
both the family name and the indices.  We will speak of an array of family indices or an array of
indices.

Note that a family is a rooted tree with some additional structure.  Each branch of the tree has a specified
distance from the root.  All leaves have the same distance from the root that is equal to the height of the
family (hence the motivation for our use of the word leaf).  Each branch that has distance 1 from the root
is a child of the family.  These branches are identified by the values of an index i such that
LB ≤ i < LB+N-1.
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3.1.2. An  Example of a family
As we have said families are ubiquitous in PGM; and for that reason we will show here an example of a
family that meets these definitions..  We choose to name the family F.
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Notice the height of F is 3.

We compute F[2] obtaining:
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Notice the height of F[2, 1] is 1.
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Finally compute F[2,1, 0] obtaining:

10F[2,1, 0]  =

Notice the height of F[2,1 , 0] is 0 and, in fact, 10 is a leaf.
Thus the element of F with indices [2][1][0] has value 10.

Some constructs have associated families.  If that is the case, we may systematically refer to a specified
one of these families as the construct’s family.  We will see that families are used extensively in PGM.
Specifically we will find that such graph objects as transitions, queues, graph variables, graph ports, and
transition ports and such data objects as queues may contain a family of tokens and the structure of a
given token may contain a family.

3.2. Graphs and Comand Programs
A graph consists of nodes and directed arcs.  All the nodes in a graph have user-supplied names.  In a
graph, data exists in the form of tokens of specified types.  The tokens move, one after another, from
node to node in paths whose direction is defined by directed arcs.  Directed arcs have no names.

Nodes are of two categories.  A node is categorized as a place, which represents data storage, or as a
transition, which represents the transformation of data.

The places of a graph may be initialized.  The words “transition” and “place” are adapted and
modified from the concept of Petri Nets.  As in Petri Nets, arcs are only allowed between nodes of
differing category.

The topology of a graph describes which node is connected to which node. This process indirectly
specifies how many nodes there are in the graph.

Two graphs are isomorphic if there exists a one-to-one mapping between the nodes and directed arcs of
one graph to the nodes and directed arcs of the other graph that preserves the direction of the
corresponding directed arcs, and category of corresponding nodes

The state of a graph is what tokens of the graph are in what places of the graph.

Command programs are programs written in a high-level language.  Command programs use
procedures called command program procedures, which reside in a library called the Command
Program Procedure Library.  Command program procedures manipulate graphs.  Command programs
use command program procedures to create and manipulate graphs.  Command programs support
interaction with operators to provide a set of choices for processing, thus providing an interactive
interface between an operator and graphs.

4 Instantiation Procedures
Before we can run a graph we must create it.  The principal way of creating a graph is to write a
procedure that when run, will create the graph.  To create a graph, the PGM user describes an iconic
form of a graph by using a graphic user interface (GUI).  Using click-drag-and-drop techniques, the
user puts icons that represent graph constructs on a terminal screen.  Each icon has an associated
window that contains detailed information about the object represented by that icon.  The user may edit
the information in this window by completing tables and supplying collateral information.  When the
graph is fully specified, upon user command, the GUI editor automatically writes a procedure that will be
called by a command program, which, upon execution, will create the graph.  These procedures are called
instantiation procedures (IPs).  We say that the IP instantiates the graph.
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Alternatively, a user may bypass the GUI editor, and directly write instantiation procedures.

The command program calls an IP to construct a graph called the main graph.  An IP may be written to
call another IP, creating a graph to be included in the graph under construction.  Such a graph is called
an included graph.  The main graph and any included graph may have any number of included graphs.
Henceforth in this section we refer to the main graph, together with all its included graphs as the graph.

When an IP completes its execution, all transitions of the graph are blocked from starting execution. The
detailed structure of the graph will be determined by the values of parameters called graph instantiation
parameters (GIPs) that are inputs to an IP at the time the IP is called.

Because the topology of the graph depends on the values of GIPs, graphs instantiated by different calls
to the same IP may not be isomorphic.  For example, a GIP may be used to specify the number of nodes
in a family of nodes

The graph, after being created, may be transformed to improve its performance before it is run.  The
nodes of the graph may be automatically distributed among the processors of a multiprocessor
architecture in a manner to effectively balance the throughput and latency of the application.

After this improving transformation, an unblocking procedure will unblock the transitions of the
modified graph.

IPs use command program procedures called graph construction procedures (GCPs) that have the
capabilities of constructing and connecting the nodes that constitute a graph.  The command program
constructs the graph by calling its IP.  After the graph is constructed we may start the graph.  Later we
may suspend the execution of the graph and either resume execution of the graph or delete the graph.

5 Anatomy of the graph
In this section we use the word graph to mean a main graph or an included graph

5.1. Graphs and graph parts
As we have said, a graph consists of nodes and directed arcs.  All the nodes in a graph have user-
supplied names.  In a graph, data exists in the form of tokens of specified type.  The tokens should be
thought of as moving in order from node to node in paths whose direction is defined by directed arcs.
Directed arcs have no names.

A token is a family.  The type of a token is its height together with its base type.  Its family tree and the
values of its respective leaves determine the value of a token.  The base type of a token may be a standard
variable type in the high-order language, like integer or float, or it may be a user-defined type.

The tokens enter and leave nodes by means of the node’s ports.  A port’s mode is the type of the
entering or leaving tokens.  The mode of a port is unchanging.  All the ports in a port family have the
same mode.  A port family has a name that is derived from the name and structure of the node that owns
the port family.  To connect a port to another port, the connection is indicated with a directed arc pointing
from one port to the other port.

In the GUI, one node icon may be used to represent a node family.  One included graph icon may be
used to represent a family of included graphs.  One directed arc may be used to represent all the
connections between two port families.  Two ports connected by a directed arc have the same mode.
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The following text is predicated on Figure 1.  Let P1 be a port of node N1 and P2 be a port of node N2.
Let a directed arc point from P1 to P2; then P1 is called an output port (of N1) and P2 is called an input
port (of N2).  We say that P1 and P2 are linked.  We say that N1 is an input node of N2 and that N2 is
an output node of N1.

N2N1
Directed

Arc

P1 P2

Figure 1

If N1 is a place and N2 is a transition, then N1 provides stored data to N2 so that N2 may process it.  If
N1 is a transition and N2 is a place, then N1 provides processed data to N2 so that N2 may store it.

Each place has a specified mode, which determines the type of all the tokens stored in the place.  Each
place has one data input port family and one data output port family; the mode of these ports is the same
as the mode of the place.

If N1 is a place and P1 is a data output port of N1, then N1 is said to be a data input place of N2.  If N2
is a place and P2 is a data input port of N2, then N2 is said to be a data output place of N1.

Some of the unconnected input and output ports of nodes within a graph may be called graph input ports
or graph output ports.

An input port of a graph is identified with an input port of a node in that graph.  Similarly, an output port
of a graph is identified with an output port of a node in that graph.

Each node is contained in a node family.  Each port of a node is contained in a port family of the node.
Each node family and each port family has a family name.

5.2. Place
Each place has an associated family whose children are tokens.  Each place may be initialized with zero
or more tokens.  The content of a place is the content of its associated family of tokens.  Each place also
has an associated family of input data ports whose family name is INPUT and an associated family of
output data ports whose family name is OUTPUT. .Still referring to Figure 1, suppose that the node
families containing N1 and N2 and the port families containing P1 and P2 all have height zero (i.e., they
are single nodes with single ports).  Then if N1 is a place whose name is “name1” then P1’s name is
“name1.OUTPUT”.  If N2 is a place whose name is “name2”, then P2’s name is
“name2.INPUT”.  If the family containing a node or port has height > 0, then the full name of the
node or port contains the indices needed to identify the node or port.  The syntax to express the indexing
is implementation specific.
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No more than one directed arc may connect a given place port to transition ports.  No more than one
input port of a place and no more than one output port of a place may be connected to ports of the same
transition.

The kinds of place are queue and graph variable.

Each place has an integer attribute called capacity.  No transition’s execution may result in any of the
transition’s data output place’s content exceeding the data output place’s capacity.  Depending on the
kind of place, the capacity may be changed by the system.  The capacity of a place may not be changed
directly by the values of data tokens in the graph or by any direct action of the command program.

The words produce and consume, for the purposes of PGM, are technical words.
Produce refers to the storing of new tokens in a place.
Consume refers to the possible removal of tokens from a place.
The meanings of produce and consume are modified by the kind of place in which the tokens might be
stored or removed.

5.2.1. Queue
Each queue is a place that during graph execution
• sends out tokens from its data output ports in a first-out manner;
• takes in tokens through its data input ports in a first-in manner; and
• stores tokens in the queue’s associated family.
The effect of consuming N tokens from a queue is to remove N tokens from the queue.  Unless
otherwise stated, the first N tokens are removed.

If the input port family of a queue has more than one port, then tokens are stored in the queue in the
order that they are produced to the queue.  This order depends in part on the order in which the input
transitions execute.

If the output port family of a queue has more than one port and an output transition executes, then the
token(s) read and consumed from the queue are determined by the state of the queue when the transition
executes and the number of tokens being read or consumed.  No other output transition may begin
execution until the currently execution is complete.

5.2.2. Graph variable
Each graph variable is a place that stores exactly one token.  The content of a graph variable is one.  The
capacity of a graph variable is one.

A graph variable’s associated token family has one initial token.  During graph execution, each token
produced to a graph variable’s associated family through one of its data input ports replaces the token
currently stored in the graph variable.

During execution of the graph, a graph variable will behave as if it has unlimited content and unlimited
capacity.  The result of reading N tokens from a graph variable is N tokens, all with the same value as the
currently stored token.  The result of producing N tokens to a graph variable is the storage of the last
token, replacing the previously stored token.  The effect of consuming N tokens from a graph variable is
nil.

If the family of input ports of a graph variable has more than one input port, and two input transitions
execute, then both tokens are produced to the graph variable in an order that may depend on the order in
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which the two input transitions execute.  Each new token replaces the previously stored token.  Any
output transition of the graph variable will, while executing, read the currently stored token.

5.3. Transition
PGM supports user created transitions.  PGM supplies the capabilities that allow the user to build very
complicated transitions.  A user may build transitions that are beyond our ability to automatically analyze
and improve.  We will describe PGM’s full capability and then we will describe a constrained capability
that we believe will allow adequate transitions to be built but will limit transition complexity sufficiently
to allow automatic analysis and improvement.

First we will provide a bit more general information about transitions.

If a transition has an output port that is not connected to an input port of a place, then that output port
does not block execution of the transition.  Any tokens produced at an unconnected transition output
port are discarded.

Unless otherwise stated, if a transition has an input port that is not connected to an output port of a place,
then that input port behaves as if it were connected to the output port of an empty queue.

A graph is defined to be quiescent if and only if for each of its transitions, at least one of that transition’s
input places has insufficient tokens, or at least one of the transition’s output places will not accept
tokens.

5.3.1. The unconstrained transition
Now let us look at a transition’s undisciplined capability.

During the process of a transition executing, the transition reads tokens from a computed choice of the
transition’s data input places.  The transition calculates again the transition's data input places and
continues the process of reading tokens, etc.  After an unpredictable sequence of operations, based on
the tokens read and the transition’s makeup, the transition's execution will be complete. (If we are
unlucky, the sequence may never terminate.)

If the sequence does terminate, then a computed number of computed tokens is attempted to be placed
on to the transition’s data output places within the constraint that no transition’s execution may result in
any of the transitions data output places’ content exceeding the data output place’s capacity. Otherwise
the transition decides what to do.

This decision may be to terminate execution having neither produced nor consumed any tokens.
If the capacities are met, then some computed numbers of tokens are consumed from the transition’s
data input places.

By what means does the transition make the calculations we just described?  The answer is the transition
statement.

5.3.2. Transition statement
Each transition has an associated underlying statement called a transition statement, which specifies what
the transition does during transition execution.

A transition statement is a control structure in the supporting language.  Multiple statements, connected
by the appropriate delimiters, will constitute a transition statement.
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Such statements as:
• assignment statements,
• procedure calls,
• if-then-else statements,
• case statements,
• while statements,
• repeat statements,
• for statements, and
• do statements,
are likely to be available in the supporting language.

It is more apropos to say what is not allowed in a transition statement.  These forbidden actions are those
that create programs, procedures, functions, classes, types, and constructors.  It is acceptable to call a
procedure or to create a variable of an already constructed class or type in a transition statement.  None
of the constraints mentioned here applies to a procedure called within a transition statement.  Any
procedure that is called within a transition statement is called a primitive.

Let T denote a transition.

All variables that are read or written by executing T are either:
related to place ports which are connected by directed arcs to ports of T
or
local to T’s and only T’s transition statement.

All variables that are read by executing T may not be written except by executing T.

From one execution to the next, all variables that are referred to within a transition statement and any
primitives that are called within the transition statement shall reinitialize their state.

5.3.3. The constrained transitions
We divide transitions into two groups, ordinary transitions and special transitions.

5.3.3.1. The ordinary transitions
Brief Description:  The transition executes when for each data input place there is an available token
which is read.  The transition statement computes using the read tokens, and for each data output place a
token is produced, after which a token is consumed from each data input place.

Detailed Description:
An ordinary transition may execute if for each place P with a data output port that is connected to an
input port of the transition, P is not empty.

For each place P with a data input port that is connected to an output port of the transition, the
transition's execution would not result in P exceeding its capacity.

An ordinary transition is executed as follows:
• For each input port P of the transition, a token is read from the place whose output port is connected

to P.
• If the place is a queue, the first token on the queue is read;
• The transition statement, including any primitives, executes;
• A token is produced to each place connected to an output port of the transition;
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• For each place with a data output port that is connected to an input port of the transition, a token is
consumed.

Let T be an ordinary transition, and let P be an input port family of T.  It is required that all ports in the
family P have the same mode, i.e., all tokens read via ports of P must have the same height and base type.
For T to be ready to execute, it is required that every port of P be connected to a place containing at least
one token.

Let H0 be the height of the port family P.  Let H1 be the height of the common mode of P.  When T
executes, all of the tokens read via the ports of P are assembled into a single token whose height is H0 +
H1, using the family tree of the port family P.  The transition statement operates on the resulting
assembled token.

Let T be an ordinary transition, and let P be an output port family of T.  It is required that all ports in the
family P have the same mode, i.e., all tokens produced via ports of P must have the same height and base
type.  For T to be ready to execute, it is required that every port of P be connected to a place that can
accept at least one token.

Let H0 be the height of the port family P.  Let H1 be the height of the common mode of P.  When T
executes, the transition statement must produce a single token K for the port family P.  The height of this
token must be H0 + H1, and the top H0 levels of its family tree must be compatible with the family tree
of the port family P.  The token K is then disassembled to produce a token with height H1 via each
respective output port of P.  This disassembly is the reverse process described above for an input port
family.

5.3.3.2. Special transitions of the transitions data input places
The special transitions are pack and unpack.  Pack takes in some specified number of tokens, which
may differ from execution to execution, and packs them into a single token.  Unpack takes in a single
token and unpacks it into a stream of tokens.
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5.3.3.2.1. Pack
Brief description:  Each pack has an input place from which a specified number of tokens is read.
Pack has an output place via which a single token is produced.  The tokens read are determined by the
values of tokens read from four input ports called READ, READOFFSET, CONSUME, and
CONSUMEOFFSET.  The single token produced is a family consisting of the tokens read.

Detailed description:
Input Ports:
• an input port named INPUT of any mode, and
• FOUR input ports named READ, READOFFSET, CONSUME, and CONSUMEOFFSET, all of

integer mode.

Output Ports:
• an output port named OUTPUT whose mode is derived from family of INPUT’S mode as follows:
• the base type of OUTPUT is the same as the base type of INPUT, and the height of the OUTPUT

mode is one more than the height of the INPUT mode.

READ, READOFFSET, CONSUME, and CONSUMEOFFSET may each be connected by a directed
arc to the output port of a place with base type integer and height zero.

Execution of pack may begin if:
• Any place with an output data port that is connected to any of the ports READ, READOFFSET,

CONSUME, or CONSUMEOFFSET is not empty.
• A directed arc connects INPUT to an output data port of a place Q, and Q satisfies content ≥

threshold, where threshold is determined as follows:
• Define the five Node Execution Parameters (NEPs) to be read, readoffset, consume,

consumeoffset, and threshold.
• Let each of read, readoffset, consume, and consumeoffset be determined by the value read from

the place with an output port connected to the respective input port READ, READOFFSET,
CONSUME, and CONSUMEOFFSET.

• If any of these ports is unconnected, then the following respective default values are assigned:
read = 1, readoffset = 0, consume = read, consumeoffset = 0.

• Put threshold = max (read + readoffset, consume + consumeoffset).
• If a directed arc connects OUTPUT to an input data port of a place P, then pack’s execution will not

result in P’s content exceeding P’s capacity

Execution of pack is:
• If OUTPUT is connected to an input port of a place P, a single token is produced to P.
• This token is a family of the values of the  (readoffset + 1)th through (readoffset + read)th tokens in

the token family of Q.
• The order of the elements in the family preserves the order of the corresponding tokens in Q.
• If OUTPUT is not connected to an input port of any place, then the token is discarded.
• The (consumeoffset + 1)th through (consumeoffset + consume)th tokens are consumed from Q.
• Let R be a place with an output data port that is connected to one of the ports READ,

READOFFSET, CONSUME, or CONSUMEOFFSET.   One token on R is consumed.
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5.3.3.2.2. Unpack
Brief description: Each unpack transition reads a token from its input place, the type of this token
being a family of positive height and any base type.  Each of the individual children in the family is then
made into a token and produced to its output place.  Each token produced is a family of height one less
than the height of the token taken in.

Detailed description:
Input Ports:
• Each unpack transition has an input port called INPUT that takes families of any positive height and

of any mode.

Output Ports:
• Two output ports called OUTPUT and PRODUCE.  The mode of OUTPUT is the mode of a family

member of INPUT.  PRODUCE has integer mode.
Each of the three ports may be may be connected to an appropriate port of a place.

Execution of an unpack transition may begin if:
• A directed arc connects INPUT to an output data port of a place P, and P satisfies content ≥ 1.
• Let T be the token read from P.  If a directed arc connects OUTPUT to an input data port of a place

Q, then executing unpack will not result in the content of Q exceeding the capacity of Q.
• If a directed arc connects PRODUCE to an input data port of a place R, then executing unpack will

not result in the content of R exceeding the capacity of R.

Execution of an unpack transition is:
• If OUTPUT is connected to an input port of a place Q, then each family member of T is produced to

Q.  The order of the tokens produced to Q preserves the order of the corresponding values in T.
• If OUTPUT is not connected to an input port of any place, then no token is written.
• If PRODUCE is connected to the input port of a place R, then a single integer token, whose value is

content of T, is written to R.
• If PRODUCE is not connected to an input port of any place, then no token is written.
• One token is consumed from P.

5.4. Graph determinacy, a warning
This section gives a brief description of the concept of determinacy and how it can be managed in
processing graphs.  Consider a graph with a given sequence of tokens read at each of its graph input
ports.  There may exist different valid sequences of transition execution for the graph.  Thus it is
possible that the sequence of tokens produced at each output port of the graph may depend on the order
in which the transitions execute.  A graph is said to have determinacy if the sequence of tokens produced
at each output port is determined solely by the sequence of tokens read at each input port.  That means
that the output sequence of tokens is independent of the order of transition execution and independent of
the implementation of PGM that processes the graph.

Depending on the intended use, the user may wish to develop graphs that have determinacy.  On the
other hand, the user may wish to develop graphs that do not have determinacy while controlling that non-
determinacy.  Thus it is important to understand the factors that may lead to non-determinacy.

We call a place P determinate if P meets the following criteria:

• If P is a graph variable, then the input data port family of P is empty.
• P is a queue, then each of the associated input and output data port families has height zero or is

empty.
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We call a place P non-determinate if P is not determinate.  A graph G will have determinacy if all its
places are determinate.

If P is a non-determinate place, then there may be two transitions T1 and T2 connected to P, such that
the order in which T1 and T2 execute determines the state of P.  In other words, the values of tokens in
P depend on the order of execution of T1 and T2.

Warning:  A particularly serious kind of non-determinacy arises when data obtained from a non-
determinate place determines the value of a NEP in a pack transition.  This may result in unrepeatable
token values and unrepeatable numbers of tokens, resulting in a loss of synchronization between parallel
pathways within the graph.

6 Graph construction
In a given system, there is at most one main graph.  The main graph may have any number of included
graphs.  Each included graph may, in turn, have any number of included graphs.  Henceforth in this
section, unless otherwise stated, we use the word graph to mean either main graph or included graph.

Let G be a graph, let N0 be a node in G, and let P be an input port or output port of N0.  P may be
connected to a port of another node N1 ≠ N0 in G.  Or P may be associated with a graph port GP of G.
If P is associated with GP, then we say that GP is an alias of P.  If P is associated with GP, then P may
not be connected to any port of a node or included graph in G.

We say that GP has the same category, direction, and mode as its associated node port.  This, if N0 is a
transition and P is an input port of N0, we say that GP is a graph input transition port of G.  In a similar
way, we may refer to a graph output transition port, graph input place port, or graph output place port of
G.

Now let H be an included graph in G, and let P be a port of any node or included graph in G.  It follows
that P may be connected to a port HP of H if and only if the following conditions are met:
• P and HP have opposite category, i.e., one is a place port and the other is a transition port.
• P and HP have opposite direction, i.e., one is an input port and the other is an output port.
• P and HP have the same mode.

Let P be a port of a node or included graph K in G, and let H≠≠≠≠K be an included graph in G.  In the
construction of G, a directed arc may connect P with a graph port HP of H.  However, connecting a
directed arc between P and a node port of a node in H is not permitted.
All graph ports of the main graph are place ports.

Just as each port of a node is contained in a port family of the node, each port of a graph is contained in
a port family of the graph.  All ports in a port family must have the same mode.
In the construction of a graph, one specifies families of graph ports, families of nodes, and families of
included graphs.

Each transition in a family of transitions must have been constructed from the same IP, which specifies
the transition statement and the set of input and output port families of the transition. Each place in a
family of places must have been constructed from the same IP, which specifies the kind of place (i.e.,
queue or graph variable) and its mode.  Each included graph in a family of included graphs must have
been constructed from the same IP, which specifies the node families and the set of input and output port
families of the included graph.
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Let G be a graph, let N be a family of nodes (or included graphs) Ni in G with height H0, and let Pi be a
family of ports of Ni.  Then all port families Pi must have the same height, and all ports in every Pi must
have the same mode.  We define the port family P to be the family assembled from the family tree of N
and the ports Pi.

Association of node or included graph ports with graph ports must be by family.  This means that a
family of graph ports of a graph G is an alias of a family of ports of a node family or included graph
family in G.  More specifically, let G be a graph and let GP be a family of graph ports of G.  Let P be a
family of ports of a node family or included graph family in G that is assembled as described above.
Then P may be associated with GP if and only if the following conditions are met:

• All the ports of P and of GP have the same category, direction, and mode, and
• P and GP have the same family tree.
When the main graph is constructed, all node families are instantiated as individual nodes.  All included
graphs are instantiated by execution of their IPs to create their respective nodes.

After graph construction, an implementation of PGM may construct a flat graph by resolving and
eliminating all included graph port associations, together with family indices, into respective node ports
and connecting node ports directly with node ports.  In the flat graph, execution performance is
enhanced by this elimination of intermediate included graph ports.

7 Command programs
The command program is an application specific program that serves a variety of different purposes.

If all of the transitions of the graph are blocked from starting an execution, the graph is said to be in a
suspended state.

When a graph is created it is in a suspended state.

The command program may create one main graph and start it processing, or suspend execution.  The
command program may also write data into the graph's input place ports and read data from the graph's
output place ports.

The command program can monitor and control the translation of data from external sources and
introduce them as tokens into appropriate graph input place ports for graph processing. Examples of an
external source are a sensor that measures observable phenomena, an operator or separate computer
system, and a data storage medium like a disk file.

The command program can translate the tokens read at a graph output place port into appropriate form
for delivery to external destinations.  Examples of an external destination are a graphics display monitor,
an operator or separate computer system via a message, and a data storage medium like a disk file.

The following sections describe the set of command program procedures to be used in building the
graph and interacting with the graph.  The command program procedures intended for building the
graph are described first.

7.1. Instantiation procedures (IPs) and graph construction procedures (GCPs)
The command program constructs the main graph by calling its IP.  The main graph's IP may call other
IPs to construct the main graph's nodes and included graphs.  Each included graph's IP may call still
other IPs to construct its nodes and included graphs.  Each graph IP may also call specific GCPs to
perform other functions necessary for complete graph construction.
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The GCPs are part of PGM.  They have names that remain the same, regardless of what underlying
high-level language is used.  Moreover they may be called in any order, subject to the requirement that a
variable must be defined before it can be used.  A GCP must be called within the body of an IP, and it
applies to one or more objects within the graph being constructed by that IP.

IPs are not canonical, their names are not part of PGM.  There is no fixed “correct” way of writing
them.  There is no enforced calling sequence for them.  We do provide a suggested sequence that is not
enforced.  The suggested calling sequence is the same as the sequence that our GUI editor will produce
when it generates an IP.

Some of the GCPs have names of graphs, graph ports, or nodes as arguments.  These names are
character strings that are assigned as attributes of the respective graphs, graph ports, or nodes.  These
names do not refer to the variable names used in the source code to identify the respective entities.

7.1.1. Ips
A formal IP call specifies the name of the IP and its formal input and output arguments.

GIPs are values used by the IP when constructing a node or graph to determine the topology and state of
the node or graph.  A GIP of a graph IP may be used to determine the number of times a loop is
executed to construct a family of nodes or of included graphs.  GIPs of a node or included graph IP
may be used to specify parameters of a family tree for a family of ports, nodes, or included graphs.  A
GIP of a place IP may be used to determine the initial values of tokens in places of the graph.  GIP may
be passed as an argument of another IP.

A graph G consists of:

• All of its nodes, included graphs, directed arcs, and the initial tokens in the places of G.
• A possibly empty set of graph input ports and graph output ports of G.  Each graph input port and

graph output port of G identifies an unconnected port of a place in G.  We refer to the graph input
ports and graph output ports as graph ports.  We refer to each graph port as a graph place port or
graph transition port.

A program that can access G may use the graph place ports of G to introduce data into G for processing
and for retrieving the resulting processed data from G.

• Our suggested formal inputs for an IP are:
GIPs,

• Families of input ports,
• Families of output ports,
• Implementation specific parameters.

Each family of ports comprises both the family name and a specification for the family tree.  This
specification tells how to construct the family tree by using some or all of the assigned values of the
GIPs.

The nodes and included graphs of a graph are internal to the graph.  All other PGM entities (i.e., the
command program and all nodes and included graphs not internal to the graph) are external to the graph.
The interface between a given graph and its external entities make up the graph's exterior.  This interface
comprises the graph's input ports and output ports.  We extend the notion of exterior to the graph's IP
by defining the exterior of an IP to be the collection of formal inputs for that IP.
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Our suggested output for an IP is a node or graph constructed by the IP.

7.1.2. GCPs
Each GCP call results in a specific action, which is a piece of the graph building process.

Each GCP causes an action that either aids in the construction of or modifies objects within a graph.

A GCP may be used to install a node N or an included graph S in a graph.

A GCP may be used to connect a directed arc between two ports of nodes or included graphs.

GCPs may be used to construct the family tree for one or more initial tokens of a place, for a family of
nodes or included graphs, or for a family of ports of a node or graph.

GCPs may be used to construct tokens for initial values of places.  The command program may call the
same GCPs to construct a token for introduction to input place ports of the main graph.

7.1.2.1. Connect two ports with a directed arc
Function name: connectPorts
Input arguments:
• family name of the node or included graph containing the output port,
• array of family indices to identify the node or included graph in the family,
• family name of the output port,
• array of family indices to identify the output port in the family,
• family name of the node or included graph containing the input port,
• array of family indices to identify the node or included graph in the family,
• family name of the input port,
• array of family indices to identify the input port in the family.

Output arguments:
None.

Discussion:
Let NP denote the output port and N'P denote the input port such that the modes of NP and N'P are the
same, but of opposite category.  Procedure connectPorts causes a directed arc to be formed in G from
NP to N'P.

7.1.2.2. Associate a family of node or included graph input ports with a family of graph

Function name: associateGraphInport
Input arguments:

• Input graph port family name,
• Family name of node or included graph containing the input port family to be associated,
• Family name of the input port family.

Output arguments:
None.

Discussion:
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The input graph port family and the input port family of the node or included graph must have the same
family tree.  Each input graph port is associated with the input port of the respective node or included
graph (i.e., with the same family indices).

7.1.2.3. Associate a family of node or included graph output ports with a family of

Function name: associateGraphOutport
Input arguments:
• Family name of node or included graph containing the output port family to be associated,
• Family name of the output port family,
• Output graph port family name.

Output arguments:
• None.

7.1.3. Graph manipulation and interaction
The following sections describe additional procedures that may be called by a command program for
purposes of manipulating graphs, and interacting with graphs.

The output graph port family and the output port family of the node or included graph must have the
same family tree.  Each output graph port is associated with the output port of the respective node or
included graph (i.e., with the same family indices).

7.1.3.1. Start execution of a main graph
Function name: startGraph
Input arguments:
• Newly created graph.

Output arguments:
• None.

Discussion:
Execution of this procedure enables all graph transitions.

7.1.3.2. Suspend execution of a main graph
Function name: suspendGraph
Input arguments:
• The graph to be suspended.

Output arguments:
• None.

Discussion:
Execution of this procedure suspends all transitions in the graph, preventing every transition from
starting or restarting an execution.  No transition in the suspended graph is blocked from completing
ongoing execution.

7.1.3.3. Restart a suspended main graph
Function name: reviveGraph
Input arguments:
• The graph to be restarted.
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Output arguments:
• None.

Discussion:
The graph must be in the suspended state.  Execution of this procedure enables all graph transitions.

7.1.3.4. Delete a main graph
Function name: Implementation specific - the high order language may have a specific function
for deleting objects.
Input arguments:
• suspended graph to be deleted.
Output arguments:
• none
Discussion:
The graph must be in the suspended state.  All transitions, places, and included graphs in the graph are
deleted. .

7.1.3.5. Get access to a main graph input place port
Function name: getInPort
Input arguments:
• The family name of the graph input place port,
• An array of family indices.
Output arguments:
• The desired graph input port.
Discussion:
The family name and the array of family indices identify the desired port
.
7.1.3.6. Get access to a main graph output place port
Function name: getOutPort
Input arguments:
• The family name of the graph output place port,
• An array of family indices.
Output arguments:
• The desired graph output port.
Discussion:
The family name and the array of family indices identify the desired port.

7.1.3.7. Write one token to the place associated with the main graph input place port
Function name: putToken
Input arguments:
• Graph input place port,
• A token.
Output arguments:
• None.
Discussion:
The result of successfully executing this function may not cause the place to exceed its capacity.

7.1.3.8. Read one token from the place associated with the main graph output place port
Function name: getToken
Input arguments:
• Graph output port,
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Output arguments:
• token.
The content of the place must be at least one for successful execution of this function.


